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ABSTRACT

This paper is concerned with piecewise smooth plane

deformations in an isotropic, incompressible elastic material.

An explicit necessary and sufficient condition for the existence

of piecewise homogeneous equilibrium states is established, and

the set of all such states is precisely characterized. A

particularly simple expression is derived for the driving

tractionC on a surface of discontinuity in the deformation

* gradient.'a
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1. Introduction

When finitely deformed, certain elastic materials are capable of

sustaining deformation fields which involve discontinuous gradients. In

such circumstances, the deformation varies smoothly throughout the body

except at certain surfaces across which the displacement gradient suffers a

jump discontinuity, even though the displacement itself remains continuous.

Continuum mechanical treatments of stress-induced phase transformations in

solids involve such deformations; see, for example, [1-3].

In this paper we first examine conditions under which a piecewise

homogeneous plane deformation can be sustained by an incompressible, iso-

tropic elastic material. The question of the existence of such fields has

been investigated previously. For example, the analysis in [41 addresses

this issue within the context of compressible elastic materials undergoing

plane deformations, while [5] contains a similar study for incompressible

materials, and the investigation in [61 approaches the subject from a vari-

ational point of view. By restricting attention in this study to materials

that are isotropic and incompressible and to plane deformations, we are

able to derive a single necessary and sufficient condition for the

existence of piecewise homogeneous deformations. Moreover, this condition

is expressed in a form that is particularly useful; in addition to provid-

ing information on existence, it also allows us to characterize the set of

all possible piecewise homogeneous equilibrium states. A similar result

for anti-plane deformations was established in [7].

When the theory of elasticity is broadened to allow for equilibrium

fields with discontinuous deformation gradients, it turns out that the

usual balance between the rate of external work and the rate of storage of

%~ % .. %



elastic energy during a quasi-static motion no longer holds; see [8].

Instead, one finds that mechanical energy may be dissipated at points on

the surfaces of discontinuity. This is analogous to the dissipation of

energy in an inviscid compressible fluid when the flow involves a shock:

the analogy suggests the term "equilibrium shock" for surfaces bearing

discontinuities in the displacement gradient in elastostatic fields.

As discussed in [9-12], the altered energetics of fields with equili-

brium shocks lead to the notion of a scalar "shock driving traction" f

which may be viewed as a normal traction that the body applies to the shock

at each of its points. At each point on a moving shock during a quasi-

static motion, the product of f with the normal velocity of the shock rep-

resents the local rate of dissipation. The presence of dissipation suggests

that elastic fields with equilibrium shocks might be used to model certain

types of inelastic behavior in solids. Investigations that confirm this

possibility are summarized in [10-12], where the nature of the shock trac-

tion f plays a major role.

The problems treated in [10-12] are essentially one-dimensional; for

these, the structure of the shock traction and its dependence on the defor-

mation are well understood. For problems involving more dimensions, the

matter is less fully explored, although Yatomi and Nishimura [13[ have

obtained some valuable results. The second principal objective of the pre-

sent paper is the derivation of an especially simple expression for the

shock driving traction for isotropic, incompressible elastic materials in

the case of plane deformations.

In Section 2 we present some background material on equilibrium shocks
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in the appropriate setting. The structure of piecewise homogeneous

equilibrium states is described in Section 3, and a necessary and

sufficient condition for the existence of such states is established and

discussed in Section 4. In Section 5, the representation for shock

traction mentioned above is derived and discussed.

2. Preliminaries on Finite Plane Strain and Equilibrium Shocks.

Consider an incompressible body which, in a reference configuration,

occupies a cylindrical region of space; denote by D the open middle

cross-section of this region. Let X - { 0; , e2 , e 3) be a fixed

rectangular cartesian frame whose origin 0 and basis vectors ei, e are in

the plane of D.

A plane deformation of the body is described by the one-to-one mapping

y - X(x) -x+ u(x), where x and y are the position vectors of a particle
A

in D and D* - y(D), respectively. For the present, it is assumed that

u E C2 (D), and we let F and G denote the two-dimensional deformation

gradient tensor and the left Cauchy-Green deformation tensor, respectively:

F- Vy, G - FFT. (2. V

*i Since the material is incompressible, the deformation invariants I and J

obey

I - tr(FFT ) - A1
2 + A2

2 > 2, J - det F- AIA 2 - 1, (2 2)

where Al(j) 0 and A2 (30 0 are the principal stretches of the

deformation at a point in j in D.

I
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The following kinematical result has been established in [5]: Every

two-dimensional tensor F with unit determinant admits the two decomposi-

tions

- II - K222, (2.3)

where 21, 92 are proper orthogonal tensors, and Kl ,2, are tensors whose

matrices of components in suitable rectangular cartesian frames X, and X2

have the common value

k
[KlXI] - (K2XZ] - , (2.4)

with

k - 1(1-2) > 0, where I - trFFT. (2.5)

It follows that any plane volume-preserving deformation can be decomposed

locally into the product of a simple shear in a suitable direction

followed, or preceded. by a suitable rotation; k denotes the amount of this

shear.

Next, let a(x) be the two-dimensional nominal stress tensor field on D

and r(%) the corresponding Cauchy stress tensor field on D*:

q(x) - r( (x)) F-r(x), xeD. i2 6'

A

If C is a smooth arc in D, and C*-(C) is its image after deformation, the

nominal traction t on C and the true traction t on C* are

s -N on C, t -rn on C*,

_*%. *.,\*'' d. a~



where N and n are corresponding unit normals to C and C* respectively.

Assuming for the present that z(x) is continuously differentiable on D,

equilibrium in the absence of body forces requires

diva-0, aFT - FaT on D, (2.8)

or equivalently,

divr - 0, r - TT on D*. (2.9)

Turning to the constitutive law of the incompressible material at hand,

we suppose that it is homogeneous, isotropic and hyperelastic. The plane

strain elastic potential W(F) then has the form

A

W(F) - W(I); (2.10)

the value of W is the strain energy per unit reference volume. The associ-

ated constitutive law takes the equivalent alternate forms

a - 2W'(I)F - pE-T, - 2W'(I))F T - p1, (2.11)

where the scalar field p arises because of the incompressibility con-

straint.

*The particular deformation described by

yl - x, + kx 2 , Y2 - x 2 , (2.12)

is a simple shear, where the constant k denotes the amount of shear. The

corresponding shear stress component f1 2  is found from (2.12), (2.11),

(2.1), (2.2) to be rt2 " (k), where

.-- " "" "" , - . v , - " ", %" " '
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r(k) - 2kW'(2+k 2 ), - < k < c. (2.13)

The odd function r(k) is the shear stress response function of the material

in simple shear. Throughout thi. paper it will be assumed that the secant

modulus of shear M(k) is positive:

M(k) - 2 W'(2+k 2 ) > 0 for - < k < co (2.14)

this is consistent with the Baker-Ericksen inequality. While materials for

which M(k) is not always positive are of interest (see [11]), this case

will not be pursued here. Observe from (2.13) that

1(1-2)

W(I)f (k) dk for 1 >_ 2, (2.15)

0

which implies that the in-plane response, in all plane deformations, of an

isotropic. incompressible elastic material is completely characterized by

specifying the shear stress response function r(k).

The displacement equations of equilibrium for plane strain in a homoge-

neous, isotropic, incompressible material are, by (2.11), (2.8), (2.2),

c y6(FVu7,'p6 - PB0 Fp'I -l 0
on D, (2.16)

det F - 1I

where F.0 - 6a# + u,p and

¢o,,6 (F) - 2W'(I)6..6'66  + 4W''(I)F,,F7 6 . (2.17)

Here, a comma followed by a subscript indicates partial differentiation

with respect to the corresponding x-coordinate, while repeated subscripts

% . %
&a' %
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are summed over 1,2.

It has been shown in [5] that, in the presence of (2.14), the system of

partial differential equations (2.16) is elliptic at a solution u, p and at

a point x, if and only if

r'(k(x)) > 0, (2.18)

where k( ) - J(I(x)-2) - 1(trF(X)FT(X)-2) is the amount of shear associated

with the deformation at that point. From (2.13), (2.14) one has r'(0) > 0,

so that ellipticity necessarily prevails at infinitesimal deformations. If,

however, ^ fails to be monotonically increasing on -- < k < o, ellipticity

will be lost if the deformation is severe enough. If '(k) > 0 for all k,

we say that the material is elliptic for plane deformations.

One consequence of a loss of ellipticity of the governing partial dif-

ferential equations is the possible occurrence of elastostatic fields which

are less than classically smooth. In order to account for such weak solu-

tions, the smoothness assumptions made previously must be relaxed. Of par-

ticular interest is the case wherein the field quantities possess the

aforementioned degree of smoothness everywhere expect on one or more arcs

in D. Accordingly, we now allow for the possibility that although u is con-

tinuous in D, there is a single smooth curve C c D such that q and u are

respectively once and twice continuously differentiable in D-C, and a and

Vu suffer finite jump discontinuities across C. In these new circum-

stances, the field equations discussed previously continue to hold in D-C.

In addition, equilibrium considerations require that the nominal traction s

be continuous across C; this in turn implies that the true traction t is

continuous across C*, the deformation-image of C. Thus

% %
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[,Z]IN - 0 on C, 0 on C., (2.19)

where N and n are unit normals on C and C* respectively, and indi-

cates the jump across the appropriate curve. Note that displacement conti-

nuity across C requires

[[]] - 0 on C, (2.20)

where L is a unit tangent vector on C. A curve C carrying jump discontinu-

ities in F, p and a while preserving continuity of displacement and trac-

tion is called an equilibrium shock.

3. Piecewise homogeneous equilibrium states.

In order to investigate many of the local issues related to equilibrium

shocks, it is sufficient to consider the case in which D coincides with the

entire (xl,x 2 )-plane, C is a straight line through the origin, and the

deformation gradient F as well as the hydrostatic pressure p are constant

on either side of C. Under these conditions, the field equations (2.8),

(2.11) will be trivially satisfied in D - C, and the requirements remaining

to be fulfilled are (2.20) and either of (2.19).

Let L be a unit vector along the straight line C through the origin,

and let N - e3 x L be the unit normal to C associated with L, so that

( ,Nt3) is a right-handed orthonormal triplet. Let D - ix ' > 0),

D "- (x I xN < 0) be the two open half-planes into which C divides D; see

Figure 1. Points in D lie on the positive side of the shock

• ° -,.. .. .. . .. .. .. .. .. .. ....... .. ...... .. %-,.-%,
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Consider the piecewise homogeneous deformation

F x for xeD
y - (3.1)

F for xED,

+
where F and F are distinct, constant unimodular tensors:

+ -+

F o F det F - det F 1. (3.2)

+ - + -
Define G, G, I, I, k+ and k by

N.+ ++ +

G - F F T  G-FF (33)

+ +

I = tr G , l-trG (3.4

+ 1/2 0 k12

k+ - (1 2) > 0 , - (1 - 2)/2 > 0 (3.5)

In view of the kinematical result (2.3)-(2,5), k+ and k represent the
N ~+ -

respective amounts of shear associated with the deformations on D and D

The displacement corresponding to the deformation (3.1) will be conti-

nuous across C if and only if

F L - F L (3.6)

Assume that (3.6) holds, and let

+

- g FL- g FL (3.7)

where

- 1/IFl - 1/IFLl > 0;(3.
g >3
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the unit vector I is tangent to the image C* of C under the deformation

(3.1). The vector n defined by

n - e3 X 1 (3.9)

is the unit normal to C. associated with 1; ( is a right-handed

orthonormal triplet. Using the definitions of N, I and n as well as the
+ 1-

facts that det F > 0, det F > 0, one can show that D* (y I y-n > 0) and

D. - (z I .n < 0) are the respective images of D and D under the

deformation (3.1). Because det F - det F - 1, (3.7) and (3.9) imply that

+ -

FTn = FTn = g N, (3.10)

from which it further follows that

+g - (n . 'n)1/2 _ (n . Gn)1/ 2 . (3.11)

Note from (3.11) that

[[n • * ]] 0, (3.12)

where [[.]] indicates the jump across the shock.

A fiber whose orientation in the reference configuration is parallel to

the shock C suffers a relative extension (l-g)/g when g - 1, such a fiber

is unextended by the deformation (3.1). When this is the case, we say the

shock is normal; otherwise, it is oblique.

Let a unit vector L and a unimodular tensor F be given. Define g and I

through the first equalities in (3.8) and (3.7), respectively, and define n

by (3.9). A unimodular tensor F will satisfy (3.6) if and only if there is

a number K such that

lop

o U,
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+

F - ( + ( n)F (3 13)

where ® denotes tensor multiplication of two vectors. To prove this, sup-

pose first that F satisfies (3.6). It follows that F - F + h ® N , where N

t 3 x L and h - N -FN. Alternatively, we may write F - (I + (hoN)F'I)F-

(1 + h®(F'1)TN)F so that by the first equality in (3.10), F-

(I + (i/g)h Dn)F. Taking the determinant of both sides of this equality and

recalling (3.2)2 implies that h - n - 0. Consequently h is parallel to 2,

and we may write h - (xg) 2, which establishes (3.13). The definition of h

together with (3.10) and x- (I/g)h-2 gives

,+

- - (/g2)([,- Gril. (3.14)

Conversely, if F is given by (3.13), tnen it is unimodular and

satisfies (3.6).
'•

Geometrically, (3.13) asserts that the deformation on D may be viewed

as the composition of two deformations, the first of which is the extension'.
to D of the defomation on D, while the second is a simple shear parallel to

C. in which the additional amount of shear is P.

We turn next to the continuity of traction across the shock. By

(2.19)2, (2.11)2, (2.14) and (3.3), this requires

[[M(k)G]I n- [p] 3.15)

where M(k) is the secant shear modulus. Taking the dot product of (3 15)

with n and using (3.11) gives the jump in pressure as

[[Pjll [[M(k)]] g2 , 3-16)

%-.

&. -,ft, .%,ftft.. .. . .-. f. .5. - ,. . . .. -. - ., .- e- "* . f % .\ .,.



--13--

while the dot product of (3.15) with I gives

+

I * [[M(k)2]] n - 0 (3.17)

Conversely, if (3.16) and (3.17) hold, then so does (3.15). Finally, using

(3.14) to eliminate IoGn in (3.17) yields

+

x - [M(k+) - M(k)] (. Gn)/ [g2M(k_)]. (3.18)

Several useful facts follow from (3.18). First, in a piecewise homogeneous

equilibrium state, necessarily k+ o k_; otherwise, by (3.18), K - 0, so
- -9

that by (3.13), F - F , contradicting the first of (3.2). Second, one must

have k+ o 0, k o 0. If, for example, k+ - 0, then (3.3) and (2.3), (2.4)

applied to F show that G is the identity. From (3.18) it again follows

that x - 0, which is impossible. Similarly, k- o 0. Thus the deformations

on both sides of the shock must involve nontrivial, distinct amounts of

shear k+, k_

Let a unimodular tensor F be given. The shock problem requires the

determination of a unimodular tensor F - F and a unit vector L such that

(3.6) and (3.17) hold; in (3.17), G and G are to be given by (3.3), k+ and

k. by (3.5), g - 1/ I, 2- g FL , and n is as in (3.9). For a given F,

let F, L be a solution of the shock problem, and let p be a given constant.

Define p by means of (3.16); then p, and p will generate a piecewise

homogeneous equilibrium state through (3.1) and the constitutive law

(2.11)1. The shock C is the straight line through the origin determined by

L.I
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4. Solutions of the Shock Problem.

Here we establish a necessary and sufficient condition for the

existence of solutions to the shock problem, and we discuss its interpreta-

tion and some of its implications.

+

Proposition: Let F be a given unimodular tensor, and let k+ be given
by

k+ - J(tr(F) - 2). (4.1)
+

A solution to the shock problem corresponding to F exists if and
only if there is a number k- o k+ such that

[7(k+) - (k_)](k+ - k-) S 0 , (4.2)

where ;(k) is the shear stress response function characteristic of
the material.

We first assume that the shock problem has a solution F, L for the
+

given F and show that the result stated above is necessary. We begin by

recording the identity

(n.Gn) 2 + (1.Gn)2 - II2 _ (n G2n). (4.3)

The Cayley-Hamilton theorem applied to the unimodular tensors G and G,

together with (4.3) and (3.11), yields

+ +-.

(t.q2G) 2 _ _g4 + Ig2 - 1 , (2.Gn) 2 - -g4 + Ig2 - 1 (4.4)

Using (4.4) and (3.5) in (3.17) gives the following equation for g in terms

of k+ and k.:

[[M 2 (k)]+ g4 - [[M 2 (k)(2+k 2 )]]+g 2 + [[M 2 (k)]]+ - 0 (4.5)

Because of (3.1 1 )1, we may write
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+ +

g2 _ 1
2 cos 2 9 + A2

2 sin 2 9 , (4.6)

where 0 is the angle in [0,x] between n and the principal direction of G

that corresponds to the principal stretch A1 . Without loss of generality,

we assume that A1 5 A2, so that it then follows from (4.6) that

+ +
Al < g < A2 " (4.7)

Returning to (4.5), we note that if [[M2(k)]]- 0, we would have g - 0,

which is impossible. Thus (4.5) may be rewritten as

[[M 2 (k)k2 ]]j/ [[M 2 (k)]] - g2 + g 2  2 > 0. (4.8)

A
Since M(k) - r(k)/k , (4.8) is equivalent to

1 2  + A2 ]+-2  + g2

[[i'(k)]] / [[r2(k)/k 2 ]] - g2 + g - 2 > 0. (4.9)

+ + -From (4.6) and the fact that A1 - 1/A2 , one shows readily that g
2 + g 2  <

1 12 + A2 - I - 2 + k+2. It then follows from (4.9) that necessarily

[[2 (k)]]+ [2(k)/k2] k+ (4.10)

Finally, one can show that (4.10) is equivalent to

A
[r(k+) - ^(k )](k+ k-) : 0 , (4.11)

thus establishing the necessity of (4.2).

We now show that the conditions stated in the proposition are suffi-

cient for the existence of an equilibrium shock. Let F be a given unimodu-

lar tensor, and let k+ be defined by (4.1). Suppose that there is a number

k- o k+ satisfying (4.2); note that there may be many such numbers. There

N-N -?%-* . .... ... ... ... '.'. . .-. . .. . . ... . .. . ..

%.
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is then a root g of (4.9) satisfying (4.7) for this k_ in fact, there are

two such roots. For each such g, there is an angle 0 satisfying (4.6) and

hence determining a unit vector n. Corresponding to this pair gn, one
4T

defines N - (l/g) F n; see (3.10). Let L - N x e 3 , Z x 2e3, and define K

by (3.18), using - F. Finally, define F by (3.13). With L and F con-

structed in this way, (3.6) is automatically satisfied. It is readily veri-

fied that (3.17) holds as well. Thus F and L furnish a solution of the

shock problem corresponding to the given F, and the proof is complete.

The proposition just proved may be interpreted geometrically with the

help of a set Z in the (kl,k2)-plane defined as follows:

Z - ((kl,k 2) I [r(k I ) - A(k2 )](kI - k2) : 0, kl>O, k2>0, kI 0 k2 ) (4.12)

Given a unimodular tensor F, the proposition asserts that the corresponding

shock problem has a solution if and only if there is a number k such that

(k+,k-) E Z, where k+ - ,[tr(FFT) - 2] is the amount of shear associated
+

with F. For illustration, consider a material whose shear stress response

AA
function Ar(k) is as shown in Figure 2. Let r be the closed curve defined by

P - ((kl,k 2 ) T(k1 ) - r(k2 ), kl > 0, k 2 > O (4.13)

the set Z for this material consists of all points on and within r except

for the points on the diagonal line kl - k2. Z is symmetric about this

diagonal. Figure 3 shows the curve r and the region Z for a material of the

kind described above whose shear stress response is given by

r(k) - M(k - 7k3 + k5), - - 1.875 , p > 0 (4.14)

the qualitative nature of Figure 3, however, does not depend on this spe-

A
cial choice, as long as r(k) has the form shown in Figure 2. The shaded

I st e..-v4.*... r. % r % 4. '.* e 
2e% 
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A A.
region in Figure 3 consists of points (kl,k 2 ) at which r'(k I) and r'(k 2 )

are both positive; the corresponding piecewise homogeneous equilibri '

states always involve deformations that are elliptic on both sides of th'o

shock. This is not the case for points (kl,k 2) in the unshaded part of Z.

For the special case of a normal shock, g - 1, and (4.9) immediately:

yields

r(k+) - \k.)4

thus the set of points in E that correspond to normal shocks are preciselv

the points on the boundary r of Z except, of course, for the points with k+

-k

A

If r'(k) > 0 for all k, so that the shear stress in simple shear is a

monotone increasing function of the amount of shear, the material under

consideration is elliptic for plane deformations. It is an iminediate

consequence of the proposition that Z is empty in this case, and no piece-

wise homogeneous equilibrium states of plane strain exist for such a mate-
A "

rial. On the other hand, if the material is such that r'(k) is non-positive

A
throughout some interval, then - since r'(0) > 0 by (2.13), (214) - piece-

wise homogeneous plane equilibrium deformations will certainly exist for

suitably chosen values of F.

The observations of the preceding paragraph were made in '51 on the

basis of a different analysis. In addition to providing information on the

existence of shocks, the approach taken here also characterizes all pos-

sible piecewise homogeneous equilibrium states corresponding to a given F.

For each k > 0, let Ek be the set in the (kl,k 2 )-plane defined b'

.1.*...........
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k - 1" (k,,c) E Z) - (c I (Kk) E Z) (4.16)

Ek is the cross-section of Z at either k, - k or k2 - k . If F is a

unimodular tensor, let k - 4[tr( T ) - 2]; if Ek is non-empty, then there

exists an equilibrium shock corresponding to every k. in Ek

We turn now to a discussion of the structure of the driving traction

associated with equilibrium shocks.

5. Shock Traction

For the purposes of this section, it is necessary to consider quasi-

static motions of the body. Let (u(.,t), p(-,t)), to < t < tI , be a

one-parameter family of weak solutions of the displacement equations of

equilibrium (2.16) of the type described in Section 2; let Ct c D be the

associated family of shocks. Assume that the particle velocity v(x,t) = 4

au(x,t)/at exists and is continuous in (xt) for x E D-Ct, to < t < tI,

and that v is piecewise continuous on D x [t0 ,tl].

Let V(x,t) be the velocity of a point on the moving curve Ct which

at time t is located at x, and denote by ( X,t) the unit normal to C. at

this same point. Note that, even though the deformations here need not be

piecewise homogeneous, equations (3.2)-(3.18) and (4.1)-(4.12) continue

to hold at each point on Ct and each instant t, provided that one

interprets F(x,t) or F(x,t) as the limiting values of F as the point x on

Ct is approached from its positive or negative side, respectively. The

positive side of Ct is the one into which N points.

- %.

% % . - .
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As shown in [8], the presence of the shock affects the balance of

mechanical energy during the motion in an essential way. For any fixed

regular sub-region H of D, let d(t) represent the difference between the

rate of external work on 11 and the rate at which elastic energy is being

stored:

d(t) - v ds - d JW(F) dA, to t < tl; (5.1)

811 11

d(t) is the rate of dissipation of mechanical energy associated with the

particles which occupy the region H in the reference state. By adapting to

plane deformations an argument given in [8], one can show that d(t) may be

written as r +
d(t) -[[P]]N . V ds, (5.2)

Ctr-E

where P(x,t) is the two-dimensional energy-momentum tensor,

f - W(F). - FT g, I E D-Ct, to < t < tI . (5.3)

If Z(.,t) happens to be continuous across Ct at an instant t, (5.2)

gives d(t) - 0. In general, however, if H intersects Ct, d(t) o 0

It has been shown in [8] that, because of displacement and traction

continuity across Ct  , the vector [[ ]]_ is normal to C t at each of its

points. Thus we may write (5.2) in the alternate form

d(t) - J f N.V ds, (5.4)

ctnH

where f(x,t) is defined by

% %....
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+

f - [[]] N C t ,  to  t t .  (5.5)

Combining (5.1) with (5.4) yields

[s-v ds + [(f)Vds - d W(F) dA, to~st<tl, (5.6)
J J cit I
a11 CtI 1

suggesting that +fN be viewed as a fictitious nominal "shock driving trac-

tion" exerted on the shock by the surrounding material; the scalar f deter-

mines the magnitude of this traction. This concept is related to the notion

of the "force on a defect" introduced by Eshelby [9]. The expressions

(5.5), (5.3) together comprise a special case of a result given in [14:;

see also Rice [15].

When treated from a thermomechanical point of view, the dissipation

rate d(t) can be shown to be identical to the product of temperature and

entropy production rate, provided that the temperature is spatially uniform

and constant in time. The Clausius-Duhem inequality then requires the dis-

sipation rate d(t) to be non-negative for all sub-regions n and all

instants t; see [8]. Equivalently, one must have

f Vn 2: 0, xeCt, to :5 t < tl, (5.7)

where Vn is the normal velocity of a point on the shock Ct

Vn - V • N. (5.8)

The dissipation inequality (5.7) is trivially satisfied in the special

case when f happens to be zero. In general, however, this is not the case,

and given an equilibrium state, (5.7) specifies the direction in which the

the shock may move in a quasi-static motion commencing from this state.

V W
%
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Following Yatomi and Nishimura [13], one can eliminate the shock

orientation N from (5.5), (5.3) as follows: From the discussion following

(3.13),

*+ +

[[F]] - [[FN]] 0 N. (5.9)

Using this and (2.19)1 in (5.5), (5.3) yields the desired result:

+ + +

f - [[W]] -[[F]] a a, (5.10)

where the dot product of two tensors A and B is defined to be A.B =

trace(ABT).

A more illuminating expression for f may be obtained as follows. First,

from (5.5), (5.3), (2.19) and (3.13), one finds

i+ + +

f - [[W]] + x (aN • ) ( *T N). (5.11)

Using (3.10), (2.6) in (5.11) provides

f- [[Wl + (in. .)x; (5.12)

rn.2 is the shear traction parallel to the shock, while x is the amount of
Z - -

the additional shear introduced in the representation (3.13).

Finally, from (5.12) we derive an expression for f that is appropriate

for plane deformations of isotropic, incompressible, elastic materials and

that does not involve the shock orientation. By (2.11)2, (2.14) and (3.3)

we may write (5.12) as
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+ +

f - [(W]] + P K (k+) R.Gn. (5.13)

Using (3.18) to express x in terms of 2.Gn and then eliminating the latter

from (5.13) with the help of (4.4), we find

- + + 2 2+

[fW]] + (I - g 2 g)(M(k+)/M(k_))j[M(k)j] (5.14)

Writing I - 2 + k+2 and using (4.8) to eliminate g from (5.14) yields

+ M(k+) M(k.)

f - [[W(2+k 2 )]] + (k+2 - k_2). (5.15)
- M(k+) + M(k)

Equivalently, we may write

f - H(k+,k-) on Ct , to s t : tI , (5.16)

where H is the function defined on Z by

kI
I r(kl)r(k2)

H(kl,k 2) - r(k) dk - (k1
2 - k2

2 ), (kl,k 2 )eZ.
r(kl)k 2 + r(k2)kl

k2  (5.17)

By (5.16), the shock traction f at a point on the shock Ct depends only on

the local amounts of shear k+, k_ associated with the deformations on the

two sides of Ct ; in particular, f does not depend on the the orientation

of the shock.

Although derived here for plane deformations, the expression (5.16),

(5.17) for the shock traction is formally identical to the corresponding

result derived by Yatomi and Nishimura for anti-plane deformations (see

equation (3.3) of (13]). This is not surprising, in view of the represen-

tations (2.3) for plane, area-preserving deformations.

. '** .~ .. ...
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In the special case of a normal shock, we have '(k+) - r(k_) by (4.15).

so that (5.16), (5.17) reduce to

k+
- r(k) dk - (k+) (k+ - k-). (5.18)

k-

From (5.18), the value of f in the case of a normal shock may be inter-

preted geometrically as the difference A1 - A 2 , where A1 is the area under

the stress-strain curve between k- and k+, and A2  is the area of the

rectangle on the same base with height r(k+).

In general, H(kl,k 2 )-0 defines a curve lying in the region Z of the

(kl,k 2 )-plane. The shock traction corresponding to points on this curve is

zero, and therefore so is the local rate of dissipation. If at some

instant, the limiting deformation gradient tensors F and F at a particle on

Ct  are distinct but such that H(k+,k) - 0, we say that this particle

is in a "Maxwell state". For a particle which happens to involve a normal

shock, the Maxwell states as characterized through (5.18) with f - 0 sat-

isfy the well-known "equal-area rule".

Figure 5 shows the curve H(kl,k 2)-O for a material characterized by a

shear stress response function r(k) of the form shown in Figure 2. For
the purpose of drawing the figure, we have used the particular response

function given in (4.14). The shaded area indicates points at which H is

A
positive; the unshaded area corresponds to negative values of H. When i(k)

has the form shown in Figure 2, one can show that the maximum and minimum

values of H occur on the boundary of the set Z, i.e. at certain normal

shocks.

'N~~ W V,%
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